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Overview
• Aim: compute the transport coefficients of QCD 

to NLO. LO is AMY Arnold Moore Yaffe 2003

• NLO means O(g) effects from the medium

• Relies on cool new light-cone techniques (much 
more complicated for non-relativistic or mildly 
relativistic degrees of freedom)
Pedagogical review of the techniques in 
JG Teaney 1502.03730
Most of the ingredients (kinetic theory to NLO) in
JG Moore Teaney 1509.07773  (my talk at QM15) 



Motivation
• How reliable is pQCD when extrapolating to αs=0.3? 

• For thermodynamical quantities (p, s, ...) either strict 
expansion in g (QCD (T) + EQCD (gT) + MQCD (g2T) Arnold-
Zhai, Braaten Nieto, etc), or non-perturbative solution of 
EQCD (Kajantie Laine etc.) or resummations (HTLpt, 
Andersen Braaten Strickland etc.)

• For dynamical quantities? We now have 2 contrasting 
examples of O(g) corrections: very large for momentum 
diffusion (heavy quarks Caron-Huot Moore (2007),      Caron-
Huot (2008)), reasonable (~20%) for e.m. probes (JG et al., 
Laine, Laine Ghisoiu (2013-14))

q̂



Outline
✓ Introduction and motivation

• Theory overview, slightly less time-constrained*

• Results for the shear viscosity and quark number 
diffusion

• Conclusions

* More details in the backup slides and in the 
upcoming papers
This symbol:          interesting but having to skip 
for lack of time



 

Theory overview



The AMY kinetic theory



The AMY kinetic theory
• Effective Kinetic Theory (EKT) for the phase space 

density of quarks and gluons
s

• At leading order: elastic, number-preserving 2↔︎2 
processes and collinear, number-changing 1↔︎2 
processes (LPM, AMY, all that) AMY (2003)
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Fig. 1. Hard 2 $ 2 collision contributing the collision rate C
2$2

[µ]. Only hard lines which
enter or exit the boxed region are included in an e↵ective Boltzmann description.

hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧
T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for f

p

C2$2[µ] = ê
UV

(µ) vi
@f

p

@pi
+

1

2
q̂ij
UV

(µ)
@2f

p

@pi@pj
+O

✓
T

p

◆
+ µ-independent , (12){eq:twotwoexpand}

In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qij

UV

(µ) controls the longitudinal
and transverse momentum di↵usion,

q̂ij
UV

(µ) ⌘ q̂L,UV

(µ)v̂iv̂j +
1

2
q̂
UV

(µ)(�ij � v̂iv̂j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log

q̂
UV

(µ) =g2CAT
m2

D

2⇡
log

✓
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◆
, (14){uvqhat}

q̂L,UV
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✓
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◆
. (15)

Here the Debye mass is given by the integral over distribution functions

m2
D = 2g2CA

Z
d3p

(2⇡)3
np(1 + np)

T
=

1

3
g2CAT

2 , (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains
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Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (p

z

,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1 ⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) ' h2

2p!(p� !)
+

m2
1!

2!
+

m2
1 p�!

2(p� !)
� m2

1 p

2p
, (33){defdeltaE}

wherem2
1,p is the asymptotic mass of the particle with momentum p, as summarized

in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is

✓
@

@t
+ v ·r

x

◆
f(p) = C2$2 + C1$2



Transport coeffs from the EKT
• To obtain the transport coefficients linearize the theory

• Driving term equates linearized collision operator. 
Since                  ,                              η requires ℓ=2, Dq ℓ=1

• Transport coefficients obtained by the kinetic thy 
definitions of T, J once δfℓ has been obtained. Solution 
easier in quadratic form (variational). LO η,D~1/g4

Arnold Moore Yaffe (2003)

hT i 6=ji / ⌘ hJqi = �Dqrhnqi

f(p) = fEQ(p) +
X
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Reorganization
• The NLO corrections come from regions sensitive to 

soft gluons (no quarks in this illustration)

• Before we get there, let’s have a reorganized 
perspective on these regions at LO

• Look at 2↔︎2 scattering
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In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
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Here the Debye mass is given by the integral over distribution functions
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and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains
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LO soft gluon scattering
• When Q=P’-P becomes soft there are two possibilities 

for

• Left: diffusion terms, p and p’ strongly correlated

identify a longitudinal and a transverse momentum 
broadening contribution,       and

Q Q

Soft HTL-
resummed 
propagator
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• When Q=P’-P becomes soft there are two possibilities 
for

• Diffusion terms: transverse becomes Euclidean 

Aurenche Gelis Zaraket JHEP0205 (2002), Caron-Huot PRD79 (2009)

Q Q

Soft HTL-
resummed 
propagator

Z

pkp0k0

��M(p,k;p0,k0)
��2(2⇡)4 �(4)(P+K�P 0�K 0)

⇥ fEQ(p) fEQ(k) [1 + fEQ(p
0)] [1 + fEQ(k

0)]

⇥
h
�`(p) + �`(k)� �`(p

0)� �`(k
0)
i2 �

�`(p) = f`(p̂)�(p)
�

�l(p) �l(p
0)

�l(k
0)

LO soft gluon scattering
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3.3. Longitudinal di↵usion and non-Euclidean operators
{sub_sumrule}

As we mentioned at the beginning of Sec. 3, not all lightcone or light-front supported
operators admit a three-dimensional, Euclidean description for the soft modes. A
prime example is the longitudinal momentum di↵usion coe�cent q̂L, as given by
Eq. (27). At leading order it is given by the diagram shown in Fig. 5. In any

Fig. 5. The leading-order soft contribution to q̂
L

. The two dots are the two field strengths and
the double line is the adjoint Wilson line connecting them. The curly line is a soft HTL gluon. {fig_lo_soft}

non-singular gauge it reads

q̂L = g2CA

Z +1

�1
dx+

Z
d4Q

(2⇡)4
e�iq�x+

(q+)2G��
rr (Q), (67){lo}

where again G��
rr (Q) is given by Eq. (58). The x+ integration sets q� to zero.

We clearly see that, although originating from a lightcone operator, q+ cannot be
evaluated in EQCD: indeed, the zero-mode contribution exactly vanishes when the
previous techniques are applied.

We can however evaluate Eq. (67) by employing sum rules that are rooted in the
same analyticity properties that were used in the derivation of Eq. (64). In detail,
we plug the result of Eq. (58) in Eq. (67). Up to O(g2) correctionsm we then have

q̂L = g2CA

Z
dq+d2q?
(2⇡)3

Tq+(G��
R (q+, q?)�G��

A (q+, q?)). (68){lo2}

This too would be a simple enough numerical integral49 over the HTL spectral
function in the Landau cut, of di�cult extension to higher orders. However, as
we have previously remarked, retarded (advanced) two-point functions are analytic
in the upper (lower) half-plane in any timelike or light-like variable. We can thus
deform the integration contours16 away from the real axis onto CR (|q+| = µ+ � gT ,
Im q+ > 0) and CA (|q+| = µ+ � gT , Im q+ < 0), as depicted in Fig. 6.n µ+ is a

mWhen expanding the statistical factor in the soft region in Eq. (58), one has n
B

(!) + 1/2 =
T/!(1 +O(g2)).
nThe longitudinal and transverse contributions to G��

R

(Q) contain poles at q+ = q�/2 ± iq?
(q2 = 0), which, being on both sides of the complex plane, appear to violate analyticity. However
their residue cancels in the sum of longitudinal and transverse components. As observed in12 ,
they are artifacts of the decomposition into Lorentz-variant longitudinal and transverse modes and
their contribution has to vanish in all gauge-invariant quantities.

F F

Previously 
unseen footage



• When Q=P’-P becomes soft there are two possibilities 
for

• Diffusion terms: longitudinal with lightcone sum rule 

JG Moore Teaney (2015)

Q Q

Soft HTL-
resummed 
propagator
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LO soft gluon scattering
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• When Q=P’-P becomes soft there are two possibilities 
for

• Diffusion terms: easy with light-cone techniques* 

give rise to the leading log contribution 
*Caron-Huot PRD82 (2008) JG Moore Teaney (2015)
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• When Q=P’-P becomes soft there are two possibilities 
for

• Right: cross terms, p,p’ and k,k’ not correlated. 
Two-point function of two uncorrelated deviations 
from equilibrium 
(diffusion was the response of an off-eq leg to the 
equilibrium bath) 

Q Q

Soft HTL-
resummed 
propagator

Z

pkp0k0

��M(p,k;p0,k0)
��2(2⇡)4 �(4)(P+K�P 0�K 0)

⇥ fEQ(p) fEQ(k) [1 + fEQ(p
0)] [1 + fEQ(k

0)]

⇥
h
�`(p) + �`(k)� �`(p

0)� �`(k
0)
i2 �

�`(p) = f`(p̂)�(p)
�

�l(p) �l(p
0)

�l(k
0)

LO soft gluon scattering



• When Q=P’-P becomes soft there are two possibilities 
for

• Right: cross terms, p,p’ and k,k’ not correlated. 
Light-cone techniques not applicable, have to use 
numerical integration.
Easy at LO, where they are finite (no leading log 
contribution)

Q Q

Soft HTL-
resummed 
propagator
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LO soft gluon scattering



• 1↔︎2 processes: strictly collinear kinematics, 
unaffected by reorganization

Reorganization

• Reorganization of the LO collision operator
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Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (p

z

,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
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Using the dispersion relation for the hard particles this reads

�E(h, p,!) ' h2

2p!(p� !)
+

m2
1!

2!
+

m2
1 p�!

2(p� !)
� m2

1 p

2p
, (33){defdeltaE}

wherem2
1,p is the asymptotic mass of the particle with momentum p, as summarized

in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:
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Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is
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C large[µ?] + Cdi↵ [µ?] + Ccross + Ccoll

�

• Final ingredient: 2↔︎2 large angle 
scatterings, IR-regulated to avoid 
the soft region
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Fig. 1. Hard 2 $ 2 collision contributing the collision rate C
2$2

[µ]. Only hard lines which
enter or exit the boxed region are included in an e↵ective Boltzmann description.

hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧
T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for f
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(µ) =g2CAT
m2

D

2⇡
log

✓
T

µ

◆
, (14){uvqhat}

q̂L,UV

(µ) =g2CAT
m2

1
2⇡

log

✓
T

µ

◆
. (15)

Here the Debye mass is given by the integral over distribution functions

m2
D = 2g2CA

Z
d3p

(2⇡)3
np(1 + np)

T
=

1

3
g2CAT

2 , (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains



Going to NLO

• The diffusion, cross and collinear terms receive O(g) 
corrections

• There is a new semi-collinear region



Collinear corrections
• The differential eq. for LPM resummation  gets 

correction from NLO C(q⟂) and from the thermal 
asymptotic mass at NLO (Caron-Huot 2009)

                 complicated but analytical (Euclidean tech)
Caron-Huot PRD79 (2009), Lattice: Panero et al. (2013)

• Regions of overlap with the diffusion and semi-collinear 
regions need to be subtracted

Figure 5. The soft-K limits of a 1 $ 2 process. The diagram on the left amounts to a di↵usion
process at NLO, whereas the diagram on the right amounts to a conversion process. {fig_collsoft}

leave the dependence on the regulator implicit. Ccoll
a

[P ] is the purely collinear part of

the e↵ective 1 $ 2 processes, i.e. with the di↵usion and conversion limits subtracted

o↵. As we mentioned, those limits are a relative O(g) correction, so that, at LO ,

Ccoll
a

[P ] = C1$2
a

[P ], as given by Eq. (2.8). We thus defer the presentation of the explicit

form of Ccoll[P ] to Sec. 5, where we also introduce its NLO corrections.

3.1 Large-angle scattering

In more detail, for what concerns C large
a

[P ], one needs to deal with the matrix elements

listed in Table 1, i.e. the standard, leading-order QCD matrix elements, summed over all

colour and spin indices, with the Mandelstam variables s = �(P +K)2, t = �(P �P 0)2

and u = �(P �K 0)2. The presence of di↵erent channel exchanges and their integration

in the collision operator is best dealt with by using the techniques of [8], which treat

each one di↵erently.

Singly-underlined matrix elements are those that, in the soft limit, give rise to

gluonic IR divergences, corresponding to di↵usion processes, whereas doubly-underlined

ones come from fermion-exchange diagrams and give rise, in the same limit, to conversion

processes. To illustrate our regularization scheme, let us consider the contribution from

the scattering of di↵erent quark species q1q2 $ q1q2, which is given by the square of a

single t-channel diagram. Its contribution to C large
q1 [P ] reads3

C large
q1

[P ] � g4

(2⇡)3
C
F

16p2

Z +1

�1
d!

Z 2p�!

0
dq

Z 1

(q�!)/2
dk✓(q � |!|)

Z 2⇡

0

d�

2⇡

s2 + u2

t2

⇥
n

P q1(p)nF(k) [1� nF(p� !)] [1� nF(k + !)]

�⇥

P q1(p� !)nF(k + !) + P q2(k + !)nF(p� !)
⇤

[1� nF(k)]
o

, (3.2) {el2}

where the techniques of [8] have been followed, by eliminating one of the three integration

variables in Eq. (2.7) with the momentum-conserving �-function, shifting one of the

3When obtaining the complete C

large[P ] and summing over c and d, one obtains a factor of two. {foot_final}
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3. Corrections to Bremm:

(a) Small angle bremm. Corrections to AMY coll. kernel. (Caron-Huot)

✓ ⇠ mD/E

Q = (q+, q�, q?) = (gT, g2T , gT )

ˆCLO[q?] =

Tg2m2

D

q2

?(q2

? + m2

D)

! A complicated but analytic formula

(b) Large angle brem and collisions with plasmons.

• Include collisions with energy exchange, q� ⇠ gT .

✓ ⇠
p

mD/E

Q = (q+, q�, q?) = (gT, gT , gT )

The large-angle (semi-collinear radiation) interpolates collisional and rad. loss

CLO(q?) =
g2CATm2

D

q2?(q
2
? +m2

D)

CNLO(q?)



NLO diffusion and cross
• At NLO one has these types of diagrams

• For diffusion (left): application of light-cone techniques still 
possible, huge simplification and closed-form results
Transverse (NLO    ) is finite Caron-Huot (2008)
Longitudinal (NLO      ) is UV log-divergent JG Moore Teaney (2015)

• For cross (right): no diffusion picture =  no “easy” light-cone 
sum rules, only bruteforce HTL. Silver lining: they’re finite, so 
just estimate the number and vary it
Ansatz: LO cross x mD/T(~g) x arbitrary constant that we vary

HTL 
propagators 
and vertices

q̂L
q̂

q̂NLO = q̂LO +
g4C2

AT
3

32⇡2

mD
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�
3⇡2 + 10� 4 ln 2
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q2? +m2
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Z
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(2⇡)2


m2

1
q2? +m2

1
+

q2?�m
2
1

(q2? +m2
1)2

�



Diffusion corrections
• At NLO one has these diagrams

• For transverse: Euclidean calculation Caron-Huot PRD79 (2009)

• For longitudinal:

after collinear subtraction light-cone sum rule still sees only 
dispersion relation (O(g) correction). NLO still UV-log sensitive

with cuto↵ �E

µ

= (µNLO
? )2|p|/(2|k(p� k)|) (with some care on the sign of pk(p� k)) we have
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so that Eq. (64) turns into
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.(73) {jmsemicolltrans}

For µNLO
? ! 0 Eq. (65) is recovered.

A Longitudinal momentum di↵usion at NLO
{app_nlo}

Some comments: I have not analyzed HTL vertices (the photon lesson should do) and I have not
explicitly checked the cancellation of the “Coulomb gauge poles” at p+ = p

�
/2± ip? (p2 = 0).

A.1 The rainbow diagram

P

Q

Figure 3: The rainbow diagram {fig_rainbow}

19

where we have used the symmetries of the integrand to express the leading-order term as a �

function of q�.
We now inspect the second term, labeled s
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When deforming on C
R

and C
A

we have
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The p

� integration can be performed as before, yielding
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which goes like 1/(p+)2 and hence is irrelevant. This can be easily understood by noting that
the pinched poles in p

� force p

� ⇠ 1/p+, so that the factor of p�/p+ of this term with respect
to Eq. (77) behaves like 1/(p+)2.

Finally, we look at the Euclidean term, labeled e
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We need not go any further with its evaluation, at least for now.

A.2 The crossed self-energy

P

Q

Figure 4: The crossed rainbow diagram {fig_cross}
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P

Q

P +Q

Figure 5: The cat-eye diagram {fig_cateye}

A.3 The cat eye

The amplitude reads, with label c
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where I have defined the three-gluon vertex as

gf

abc�µ⌫⇢(P,Q,K) ⌘ �gf

abc [gµ⌫(P �Q)⇢ + g

⌫⇢(Q�K)µ + g

⇢µ(K � P )⌫ ] , (90) {threegluon}

where P,Q,K are all inflowing in the vertex, P is associated with a and µ and similarly for the
others. Taking the coordinate integration gives
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Let us look at the r/a structure of the propagators. Neglecting Lorentz indices the terms in
square brackets can be rewritten as
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which yields
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The second term on the bottom line vanishes under the p

+ integration, as it is odd. Similarly,
the first term yields
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which vanishes, as the p

+ integration can only pick up the residue of the Coulomb gauge poles,
which is O(�Ep) and thus makes the q

+ integration vanish.
Finally, terms with p

� or p� + q

� at the numerator in Eq. (92) vanish again for the loss of
p

+ at the numerator and of a pinched pole at the denominator. The last term trivially vanishes.
The entire result is hence given by Eq. (97).

A.4 Self-energy diagrams

We analyze separately the two diagrams show in Fig. 6, the loop diagram on the left and the
tadpole diagram on the right.

P

Q

P +Q P

Q

Figure 6: The loop diagram on the left and the tadpole diagram on the right. {fig_loop}

A.4.1 The loop diagram

The amplitude is labeled by s and reads
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NLO diffusion and cross
• At NLO one has these types of diagrams

• For cross (right): no diffusion picture =  no “easy” light-cone 
sum rules, only way would be bruteforce HTL. Missing, but 
silver lining: they’re finite, so just estimate the number and vary 
it
NLO  test ansatz: LO cross x mD/T(~g) x arbitrary constant that 
we vary

•  For cross (right): no diffusion picture =  no “easy” light-cone 
sum rules, only bruteforce HTL. Silver lining: they’re finite, so 
just estimate the number and vary it

HTL 
propagators 
and vertices

Ccross
NLO = Ccross

LO ⇥ mD

T
⇥ ccross



• Seemingly different processes boiling down to wider-angle 
radiation

• Evaluation: introduce “modified    ” tracking the changes in the 
small light-cone component p- of the gluons. Can be evaluated 
in EQCD

• Rate ∝ “modified    ” x DGLAP splitting. IR log divergence 
makes collision operator finite at NLO

Semi-collinear processes

q̂

“standard”

“modified”

K soft cut, 
spacelike

q̂

K soft plasmon, 
timelike

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

Parton energy loss and pT broadening at NLO in high temperature QCD 31

Hence we obtain

�q̂L = g2CRT

Z
d2q?
(2⇡)2

q2?�m
2
1

(q2? +m2
1)2

=
g2CRT �m

2
1

4⇡

"
ln

 �
µNLO

�2

m2
1

!
� 1

#
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where we have introduced a regulator µNLO. As we will show, the semi-collinear
region will remove the dependence on it, so that it should be taken to obey gT ⌧
µNLO ⌧ p

gT .

5.3. The semi-collinear region
{sec_semi}

As we anticipated before, semi-collinear processes can be seen as 1 $ 2 splitting
processes where the opening angle (and hence the virtuality) are larger. Two exam-
ples are drawn in Fig. 11. The scalings of this region are as follows: K ⇠ gT is soft,

p
g

p
g

K

K

P �Q

Q+K

P �Q

Q+K

Fig. 11. Diagrams for two typical semi-collinear processes. In the first case the soft gluon is in
the spacelike Landau cut, whereas in the second case it is on its timelike plasmon pole, represented
by the black blob. {fig_semicoll}

whereas the two final-state particles are collinear, albeit with an increased virtuality
and opening angle with respect to the collinear sector. The leading contribution
then comes from q+ ⇠ T, q� ⇠ gT, q2? ⇠ gT 2, Q2 ⇠ gT 2.

Naive power-counting arguments would suggest that the semi-collinear region
should contribute to leading order, as it is the largest slice of phase space where a soft
gluon can attach to a 1 $ 2 process. However, once all diagrams are summed and
squared, a cancellation, first noticed in the context of photon radiation,30 introduces
an extra O(g) suppression. Furthermore, since K ⇠ gT in all components, the
contribution from timelike soft gluons, e.g. plasmons, is now allowed. This is
contrasted by the collinear region, where kinematics enforce k� ⇠ �E ⇠ g2T ⌧
k+, k?, thus restricting soft gluons to the space-like domain only.

The contribution �Csemi�coll to the collision operator can be written in the same
way as the collinear one, as given by Eq. (42), with the replacement of the collinear

q̂ =g2CA
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• Important technical detail: subtractions (no, I am not talking about first 
grade algebra)

• Pure O(g) semicollinear rate actually involves subtraction of 
collinear and hard limits ,i.e. 

• This makes it mostly negative: when extrapolating to larger g 
we risk a negative collision operator

• We devised a new implementation that, while equivalent at 
O(g), is better behaved when extrapolating due to 
resummations

• In a nutshell, make                δE-dependent in the first-order of 
the LPM ladder resummation. Smoothens 1/k Bethe-Heitler 
IR. Implications for thermalization? 

    Semi-collinear processes

q̂(�E)� q̂(0)� q̂(�E,mD ! 0)

C(q?)
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Results
• Inversion of the collision operator using variational Ansatz

• At NLO just add O(g) corrections to the LO collision 
operator, do not treat them as perturbations in the inversion

• Kinetic theory with massless quarks still conformal to NLO

• Relate parameter mD/T~g to temperature through two-loop 
g(T) as in Laine Schröder JHEP0503 (2005)

• Degree of arbitrariness in the choice of quark mass 
thresholds, test several values of %/T

• All plots are preliminary
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• All known NLO terms, no cross ansatz yet

η/s(T) of QCD
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• Cross ansatz introduces O(±30%)  uncertainty  
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η/s convergence

• The ~entirety of the downward shift comes from NLO 
O(g) corrections to 

g4
⌘

s

Nc=3, Nf=3 QCD
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Ratios

• NLO      domination makes ratios similar

Nc=3, Nf=3 QCD
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Conclusions
All those moments will (hopefully not) be lost in time
• We have computed all contributions to the NLO linearized 

collision operator but one (for each ℓ)

• NLO corrections are #large, η and D down by a factor of ~5 
in the phenomenological region

• Convergence below mD~0.5T

• Second-order τΠ will be available in the papers

• Corrections dominated by NLO     . Could it be that 
observables directly sensitive to transverse momentum 
broadening show bad convergence and those who are not 
show good convergence? Why? 
#statisticswithsmallnumbers

q̂
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Elastic processes

• Boltzmann picture, loss - gain terms

• Integration with bare matrix elements gives log 
divergences for soft intermediate states, cured by HTL 
resummation ⇒ nasty n-dimensional numerics?

2.1 The Boltzmann picture at leading order {sec_lo_boltzmann}
Let us start from the e↵ective kinetic theory developed in [1]. The Boltzmann equation

there reads
✓

@

@t
+ v ·r

x

◆

fa(p,x, t) = �C2$2
a

[f ]� C1$2
a

[f ], (2.2) {boltzmann}

where fa(p,x, t) is the phase space distribution for a single color and helicity state

quasiparticle of type a (fa = dNa/(d3xd3p)). In the collision operator, at leading order

in the coupling g, one needs to account for 2 $ 2 and e↵ective 1 $ 2 processes. The

former are given by the simple 2 $ 2 diagrams of QCD, such as those shown in Fig. 1,

which also establishes our graphical conventions. E↵ective 1 $ 2 processes correspond

Figure 1. Typical diagrams contributing to 2 $ 2 processes at LO. Double lines represent
particles which have at least one momentum component of the order of the temperature or
larger. Parallel double lines without arrows can be either gluons or quarks. When particle
identities need to be specified, quarks are identified by the fermion flow arrow and gluons by the
curly line. In all diagrams in the paper, time is understood to flow from left to right. {fig_22}

to medium-induced radiation and are the dominant source of energy loss of the hard

particles. They are in principle n + 1 $ n + 2 processes, where n � 1. An example

is shown in Fig. 2. Although apparently suppressed by powers of g, these processes

contribute at leading order under the provision that

• the momenta of the hard/thermal lines are nearly on shell , i.e. P 2, (P �Q)2, Q2

<⇠ g2T 2, and collinear to each other, i.e. ✓ <⇠ g, where ✓ is the emission angle 1

and
1In the case where P and Q are both thermal, such as when dealing with the thermal photon rate, {foot_angle}

then the angle is of order g. In the case of interest, i.e. P hard, there are two di↵erent possibilities. If

either Q or P �Q are thermal, i.e. there is a hierarchical separation between the emitted particles, then

the angle is again of order g. If instead the splitting is more democratic, with no hierarchical separation,

then the angle can become as small as gT/E.

– 3 –

C2$2
a [P ](p) =

1

4|p|⌫a

X

bcd

Z

kp0k0

�

�Mab
cd

�

�

2
(2⇡)4 �(4)(P +K � P 0 �K 0)

⇥
n

P a(p)nb(k) [1±nc(p0)] [1±nd(k0)]� gain
o

Double line: hard (one 
component O(T) or larger)

Id. specified with curl or arrow 
when needed



• Effective 1↔︎2: 1+n↔2+︎n with LPM 
suppression, collinear kinematics

• Rates (gain and loss terms) individually quadratically IR 
divergent for soft gluon emission/absorption, but gain-
loss is finite

• Both processes are implemented in MARTINI Schenke Gale 
Jeon PRC80 (2009)

Radiative processes• the momenta K
i

of the gluons are spacelike and soft with k+, k? ⇠ gT and

k� <⇠ g2T , so that the kinematics of the collinear particles are una↵ected by the

gluon.

g

P

Q

P �Q

Figure 2. A typical diagram contributing to 1 $ 2 processes at LO. The single curly line is a
soft gluon. The crosses represent the scattering centers, i.e. thermal constituents of the medium. {fig_coll}

For those same reasons, the amplitudes involving any number of these soft gluons at-

taching to all colored hard/thermal lines contribute at leading order and interfere with

each other, in what is know as the Landau-Pomeranchuk-Migdal (LPM) e↵ect. [[(all

sort of references here/in intro)]]

In detail, the collision operator reads (dropping for brevity the spacetime depen-

dence, which is local)

C2$2
a

[f ](p) =
1

4|p|⌫
a

X

bcd

Z

kp

0
k

0

�

�

�

Mab

cd

(p,k;p0,k0)
�

�

�

2
(2⇡)4 �(4)(P +K � P 0 �K 0)

⇥
n

fa(p) f b(k) [1±f c(p0)] [1±fd(k0)]

� f c(p0) fd(k0) [1±fa(p)] [1±f b(k)]
o

, (2.3) {eq:collision22}
and

C1$2
a

[f ](p) =
(2⇡)3

2|p|2⌫
a

X

bc

Z 1

0
dp0 dq0 �(|p|� p0 � q0) �a

bc

(p; p0p̂, q0p̂)

⇥
n

fa(p) [1±f b(p0p̂)] [1±f c(q0p̂)]� f b(p0p̂)f c(q0p̂) [1±fa(p)]
o

+
(2⇡)3

|p|2⌫
a

X

bc

Z 1

0
dq dp0 �(|p|+ q � p0) �c

ab

(p0p̂;p, q p̂)

⇥
n

fa(p) f b(qp̂)[1±f c(p0p̂)]� f c(p0p̂) [1±fa(p)][1±f b(qp̂)]
o

, (2.4) {eq:collision12}
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0
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+
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Z 1

0
dq �c

ab((p+ q)p̂;p, q p̂)
n
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Transverse momentum diffusion

• All points at spacelike or lightlike separation, only 
preexisting correlations

• Soft contribution becomes Euclidean! Caron-Huot PRD79 
(2008)

• Can be “easily” computed in perturbation theory 

• Possible lattice measurements Laine Rothkopf JHEP1307 
(2013) Panero Rummukainen Schäfer 1307.5850

y2 x2

x1y1

Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z

DADqDqe�iS(0)
TrP exp

⇢

�ig

I

⇤
dxµAa

µ(x)T a

�

(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)
s (r)�3(x1 � y1)�3(x2 � y2)e�iT

W

V
(0)
s

(r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆

, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(

V (0)
s (r) = u0(r)

log Z(0)
s (r) = u1(r)

(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)
s (r) = u0(r) = � lim

T
W

!1

1
iTW

loghW⇤i. (2.12)
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Collinear case

Collinear ⇒ almost on-shell ⇒ large x separation

x− ≪ x⊥ ≪ x+
(1/T ≪ 1/gT ≪ 1/g2T )

Consider spacetime trajectory of q, q̄:

Jµ Jµ

x

x

Trajectory in

Trajectory in

M

M

Wilson Loop Controls
Gauge Interactions

Need x⊥-separated Wilson loop.

Spacetime picture pioneered by B. Zakharov, hep-ph/9607440,9807540

XQCD, Bern, 4 Aug. 2013: Seite 14 von 25
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Euclideanization of light-cone soft 
physics

• For t/xz =0: equal time Euclidean correlators.

Caron-Huot PRD79 (2009)

Grr(t = 0,x) =
PZ

p

GE(!n, p)e
ip·x



Euclideanization of light-cone soft 
physics

• For t/xz =0: equal time Euclidean correlators.

• Consider the more general case 
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Euclideanization of light-cone soft 
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• For t/xz =0: equal time Euclidean correlators.
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• Change variables to

Caron-Huot PRD79 (2009)

Grr(t = 0,x) =
PZ

p

GE(!n, p)e
ip·x

|t/xz| < 1

G
rr

(t,x) =

Z
dp0dpzd2p?e

i(pz
x

z+p?·x?�p

0
x

0)

✓
1

2
+ nB(p

0)

◆
(G

R

(P )�G
A

(P ))

p̃

z = p

z � p

0(t/xz)

G

rr

(t,x) =

Z
dp

0
dp̃

z

d

2
p?e

i(p̃z
x

z+p?·x?)

✓
1

2
+ nB(p

0)

◆
(G

R

(p0,p?, p̃
z + (t/xz)p0)�G

A

)



Euclideanization of light-cone soft 
physics

• For t/xz =0: equal time Euclidean correlators.

• Consider the more general case 

• Change variables to

• Retarded functions are analytical in the upper plane in any 
timelike or lightlike variable => GR analytical in p0
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Euclideanization of light-cone soft 
physics

• For t/xz =0: equal time Euclidean correlators.

• Consider the more general case 

• Change variables to

• Retarded functions are analytical in the upper plane in any 
timelike or lightlike variable => GR analytical in p0

• Soft physics dominated by n=0 (and t-independent) 
=>EQCD! Caron-Huot PRD79 (2009)
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• For t/xz =0: equal time Euclidean correlators.

• Consider the more general case 

• Change variables to

• Retarded functions are analytical in the upper plane in any 
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Euclideanization of light-cone soft 
physics

• At leading order

• Agrees with the earlier sum rule in Aurenche Gelis Zaraket 
JHEP0205 (2002)

• At NLO: Caron-Huot PRD79 (2009)
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Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z

DADqDqe�iS(0)
TrP exp

⇢

�ig

I

⇤
dxµAa

µ(x)T a

�

(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)
s (r)�3(x1 � y1)�3(x2 � y2)e�iT

W

V
(0)
s

(r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆

, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(

V (0)
s (r) = u0(r)

log Z(0)
s (r) = u1(r)

(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)
s (r) = u0(r) = � lim

T
W

!1

1
iTW

loghW⇤i. (2.12)
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Collinear case

Collinear ⇒ almost on-shell ⇒ large x separation

x− ≪ x⊥ ≪ x+
(1/T ≪ 1/gT ≪ 1/g2T )

Consider spacetime trajectory of q, q̄:

Jµ Jµ

x

x

Trajectory in

Trajectory in

M

M

Wilson Loop Controls
Gauge Interactions

Need x⊥-separated Wilson loop.

Spacetime picture pioneered by B. Zakharov, hep-ph/9607440,9807540

XQCD, Bern, 4 Aug. 2013: Seite 14 von 25
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How reliable are LO Calculations?

Bad news 1: first corrections are O(g), not O(αs)

Soft gluons involved! Loop gives αs and Bose factor ∼ T/gT ∼ 1/g

And there are a lot of O(g) corrections!

(d)(c)(b)(a) (e) (f) (g)

LO requires using (a) as rung. NLO requires all!

Bad news 2: O(g) coefficient likely to be large!

NLO Not Computed! But similar computation for heavy quarks

indicate large O(g) NLO corrections. Similar to pressure at

O(g2), O(g3), possibly for similar reasons

BNL Photons: 5 December 2011: page 19 of 27



Longitudinal momentum diffusion
• Field-theoretical lightcone definition (justifiable with SCET)

F+-=Ez, longitudinal Lorentz force correlator

• At leading order

q̂L ⌘ g

2

dR

Z +1

�1
dx

+Tr
⌦
U(�1, x

+)F+�(x+)U(x+
, 0)F+�(0)U(0,�1)

↵

q̂L /
Z

dq+d2q?
(2⇡)3

(q+)2G>
++(q

+, q?, 0)

=

Z
dq+d2q?
(2⇡)3

Tq+(GR
++(q

+, q?, 0)�GA)

Wilson lines in the x� lightcone directions at x+ = �1, irrelevant in non-singular

gauges, are discussed in App. B.

We now evaluate Eq. (3.16) at LO: we simply contract the two F fields, obtaining

a forward Wightman correlator, i.e. the diagram shown in Fig. 6, which reads

Figure 6. The leading-order soft contribution to q̂L. The Wilson lines before and after the two
black dots, which represent the F+� vertices, cancel at leading order, whereas the one between
the two dots always turns into an adjoint line, which we have represented as a double line. The
curly line is a soft HTL gluon. {fig_lo_soft}

q̂
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�

�

�

�

LO soft

= g2C
R

Z +1

�1
dx+

Z

d4Q

(2⇡)4
e�iq

�
x

+
(q+)2G��>(Q), (3.18) {lo}

where G(Q) is the HTL-resummed propagator and the integral is understood to run over

soft momenta only. The x+ integration sets q� to zero and, as we show in App. C, bring

this expression in agreement with the one obtained from the rate-based definition in

Eq. (3.11). Furthermore, only the even-in-q+ part of G>(q+, q� = 0, q?) can contribute,

which is the same for G> and G< and is given by G
rr

. It is furthermore dominated

by the T/q0 = T/q+ leading infrared piece of the Bose–Einstein distribution. Upon

expanding it we have, up to O(g2) correction,

q̂
L

�

�

�

�

LO soft

= g2C
R

Z

dq+d2q?
(2⇡)3

Tq+(G��
R

(q+, q?)�G��
A

(q+, q?)). (3.19) {lo2}

We can perform the q+ integration by resorting to the analyticity sum rule techniques

developed in [2, 12]. Since retarded (advanced) two-point functions are analytic in

the upper (lower) half-plane in any timelike or light-like variable, we can deform the

integration contours away from the real axis onto C
R

(|q+| = µ
!

� gT , Im q+ > 0) and

C
A

(|q+| = µ
!

� gT , Im q+ < 0), as depicted in Fig. 7. Along the arcs the longitudinal

and transverse propagators simplify greatly, i.e.

G��
R

(P ) ! i

(q+)2

✓

1 +
q�

q+

◆

2q+q� �M2
1

2q+q� � q2? �M2
1

�

�

�

�

R

, (3.20) {arcexpand}

where M2
1 = m2

D/2 is the gluon asymptotic thermal mass. The end result is then

q̂
L

�

�
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�

LO soft
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T
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(2⇡)2

M2
1

q2? +M2
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=
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M2

1 ln
µ
q̃?

M1
, (3.21) {lofinal}
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Longitudinal momentum diffusion
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Longitudinal momentum diffusion
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q+
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LO

= g2CR

Z
dq+d2q?
(2⇡)3

Tq+(G��
R (q+, q?)�G��

A (q+, q?))



Longitudinal momentum diffusion

�µ+ µ+

q+
q̂L
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LO

= g2CR
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Longitudinal momentum diffusion

• Use analyticity to deform the contour away from the real 
axis and keep 1/q+ behaviour

�µ+ µ+

q+
q̂L

����
LO

= g2CR

Z
dq+d2q?
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